逢星期三見報

較礦石提取便宜卻耗時 互有長短

泉水煉雞用之不竭

近年,手提電腦、電話、照相機等等大行其道,除了各種儀器功能高度發 展,吸引大眾爭相使用功不可沒外,耐用的電池也是不可或缺。現今流行的電 子產品使用的電池,大都是鋰離子電池(lithium ion battery)。

顧名思義,鋰離子電池當中自然含有鋰(lithium)這種金屬。近年推出的電 動汽車,更加需要大量的鋰去製造更大的電池。金融公司高盛(Goldman Sachs) 估計,特斯拉(Tesla)的S型號電動汽車,其70kWh電池所需的鋰, 比一萬部手機所需的鋰還要多。

大家可有想過,這些電池中的鋰,是從哪裡來的?要從大自然中提取鋰,礦石 是現今一個主要的來源。

礦石提取4步驟 只需幾天完成

鋰輝石(spodumene)與透鋰長石 (petalite) 由鋰、鋁、矽及氧幾種元素組 成,是鋰金屬的重要來源;鋰雲母 (lepidolite) 含有多種金屬,除了鋰以 外,還是提供鈉 (rubidium) 等等稀有金

從這些礦石中提取鋰需要多重步驟,大 致上有4種不同的過程。

第一,就是將礦石碾磨壓碎,以加速其 他的化學過程;第二,是在提取過程的不 同步驟中為材料加熱,這樣不但可以加快 化學反應的速度,熱力本身還可以改變礦 石的分子結構,令鋰更容易被提取;第 三,在不同階段加入硫酸、蘇打,以化學 反應最終製成碳酸鋰;第四,以不同方法 便宜得多:大約只需要一半的成本。不過

將不必要的雜質去除。

南美「鋰金三角」水 加蘇打轉化

除了礦石以外,鋰還存在於一些含礦量 高的泉水中。南美國家阿根廷、智利和玻 利維亞有許多這樣的泉水,因此被稱為 「鋰金三角」。

從這些泉水提煉鋰的方法,跟我們從海 水提取食鹽有點兒相似:把這些泉水泵到 地面的蓄水池中,然後等待陽光和乾燥的 到一定程度再加入蘇打,泉水中的氯化鋰 就會轉化成為碳酸鋰供我們收集。

和上述的「礦石方法」相比,這個方法

我們需要為鋰的供應而擔心嗎?美國麻

省理工材料科學及工程學系的助理教授

Elsa A. Olivetti 和她的伴侶於今年10月發

表了一份研究文章,指出由 2010年至2014

■位於玻利維亞的烏尤尼鹽沼(Salar de Uyuni),含鋰量也很高。 由於泉水蒸發的速度不會很高,這個「泉

年間,我們對鋰的需求增加了73%,而供 水方法」可能需要一年半到三年去提取碳 應只上升了28%,碳酸鋰的價格也在2015 ; 反過來說, 從礦石中提煉, 只需幾

不過,鋰在地球的含量,應該足夠滿足 我們的需要。只不過「從泉水取鋰」的方 法需時,不能馬上適應我們需求的急速改 變。幸而有跡象顯示,供應商們正在努力 提升產量,因此對鋰未來的狀況還不需悲

作者簡介:香港大學土木及結構工程 學士。短暫任職見習土木工程師後, 決定追隨對科學的興趣,在加拿大多 倫多大學取得理學士及哲學博士學 位,修讀理論粒子物理。現任香港大 學理學院講師,教授基礎科學及通識 課程,不時參與科學普及與知識交流 活動

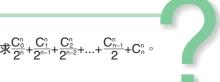
網上圖片

二項式係數

初中的時候,大概是中二左右,就會學恒等式的一課,比如(a+b)²= $a^2+2ab+b^2$,這一道算式,總會背過的。學完之後,總是仍然有無數次, 在展開的時候,寫少了中間的2ab,把展開式寫成了a²+b²,這大概誰

到了之後學的數學多一點,開始會想起,若是3次方又怎樣,於是 查一查,或者自己算一算,也會得出(a+b)³ = a³+3a²b+3ab²+b³。如 是者再問4次方5次方又怎樣,那漸漸就會找到二項式定理,也就是 $(a + b)^n \equiv C_0^n a^n + C_1^n a^{n-1} b^1 + C_2^n a^{n-2} b^2 + C_3^n a^{n-3} b^3 + ... + C_n^n b^n$,其中 $C_r^n = \frac{n(n-1)(n-2)...(n-r+1)}{r}$,r=0,1,2,...,n。這個看來還真是挺複雜的,

那麼試着找個數字小一點的情況説明一下。


試考慮n=5的情況,算式就成了 $(a+b)^5 \equiv a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 +$ 5ab⁴+b⁵,當中算式的係數還真夠奇特的,那是怎麼來的呢?試着去 了解一下a3b2的項,為什麼展開之後有10個這樣的項呢?可以把左 邊的括號寫開來看看, 就是(a+b)(a+b)(a+b)(a+b)(a+b)

留意到a³b²的項,總是由5個括號當中,選出2個b與其餘3個a相 乘而得,那麼由5件事物中選出2件而不分次序,就是 $C_2^5 = \frac{5 \times 2}{1 \times 2} = 10$ 。普遍來説,在(a+b)"的情況裡,a""b"的係數,就是組

這些組合數,單單看表達式 $C_{n}^{n} = \frac{n(n-1)(n-2)...(n-r+1)}{n-2}$,已經挺嚇人

了。不過原來有些關於這些組合數的和,是可以有個簡單方法得出 的。為了討論方便,先簡化之前的二項式定理,設a=x和b=1,得 $(x+1)^n \equiv C_0^n x^n + C_1^n x^{n-1} + C_2^n x^{n-2} + ... + C_n^n$

留意到恒等式的x可以任意代入任何數字後,等式

若是一開始不知道二項式定理,單單看着要求組合數的和,還真 夠難的,還要每個組合數都乘上了2的許多次方,看來就不太像解 得了似的。組合數配合二項式定理,可以有許多組合恒等式能夠推 論出來,結論經常都是不明顯的,單看剛才的問題,就已經多少看 到威力。

初學展開(x+1)",就是次方比較小的,也覺得挺困難的,就是有 公式,係數也很複雜。不過原來這些複雜的係數之間,經過代入不 同的x值,會令到看來複雜的組合數的和,能夠有個簡單的表達方 式。這點峰迴路轉的變化之中,令人感受到數學的趣味。數理有時 是挺繁複的,但就是在繁複的算式中,看到一點簡單的結果,更能

奧數的題目有時會在一些複雜的計算之間,隱藏了一些簡化運算 的捷徑。這並不止在於為了考驗人們的智巧,更是為了令學生避開 一些繁複的計算,直下感受到解難的樂趣。

簡介:香港首間提供奧數培訓之教育機構,每年舉辦奧數比 賽,並積極開辦不同類型的奧數培訓課程。學員有機會獲選拔 成為香港代表隊,參加海內外重要大賽。詳情可瀏覽:www hkmos.org

近年,機器的圖像辨識技術發展 得越來越成熟,背後的算法到底是 如何運作的?

之間的取捨。

2012年,有學者開始建立一個系 統,它可以分析過千張圖片,並 「自我訓練」去準確地識別常見的 物件,例如花、汽車……

在圖片辨識系統背後驅動其運作 的運算技術,稱為「神經網絡」, 它是一種在全球被廣泛使用的技 術。其中一個應用例子是無人駕駛 汽車,透過「神經網絡」,它可以 識別街道上的標誌和行人。

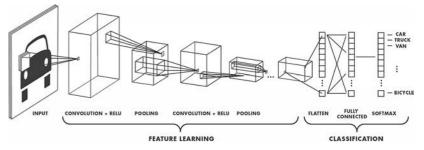
認知三維世界 勝舊有技術

不過這種技術仍有限制,譬如 説,神經網絡所認知的咖啡杯都是 直立的,假如有一張圖片顯示倒立 的咖啡杯,系統就辨認不到了。

因此,現時的研究學者正在發展 另一種運算技術,稱之為「膠囊網 絡」(Capsule Network)。設計這 個系統的意念是要仿效人類的思 維。如果説神經網絡的認知是二維 世界,那麼膠囊網絡便是三維世

獻,當中説明他們所研發的膠囊網 絡技術,可以讓機器在新的角度辨 別出不同物件,準確率比之前的技

利用膠囊網絡技術,研發團隊希 望可以建立像人類一樣擁有三維觀 點的機器,只要在一個角度認識了 指定的物件後,日後從任何角度也


膠囊方法的另一個好處是它能夠 通過一小部分數據來學習,獲得最 先進的性能。從這個意義上説,膠 囊理論更接近人腦在實踐中所做的

真正自動化路仍遠

人類的腦部散佈着神經元網絡, 而神經網絡是一種算法,透過識別 大量的數據模式,它可以學習不同 的事物,即是説,透過分析數千張 汽車的相片,神經網絡就能馬上辨 認到汽車。

這種算法的意念可追溯至1950年 代,但直至到近數年才真正應用到 現實世界,主要原因是互聯網所產 該科研團隊最近發表了一篇文 生的數據越來越多,而且處理得越

「膠囊網絡」小數據識大世界

■膠囊網絡運作示意圖

網上圖片

來越好。在最近5年,神經網絡加速 手機、翻譯系統等等

雖然近年的機器深度學習不斷進 步,現時距離讓機器擁有真正智慧 的目標仍然很遠,有必要再展開新 的研究,很多著名的科技公司亦正 在推出更優秀的自動化機器,例如 能夠與人對話的電腦、無人駕駛汽

狀況和層面,以加速電腦的運算速 度及認知範圍,亦希望製作出可以 與人對話的電腦

膠囊網絡更深入和細緻地模擬人 類腦部的神經元網絡, 這項技術也 能夠協助其他形式的人工智能「成

■香港新興科技教育協會 洪文正

簡介:本會培育科普人才,提高各界對科技創意 應用的認識,為香港青年人提供更多機會參與國 際性及大中華地區的科技創意活動,詳情可瀏覽 www.hknetea.org

突顯那簡潔的美感。

什麼是《兒童減少災害風險憲 章》?這是保護兒童在災難中的安 全和救援的憲章。

2006年10月11日是第十七個國際 减災日,前聯合國秘書長安南當天 同盟在21個國家召開了協商會議, 發表了國際減災日致辭。

他在致辭中説,當年國際減災日 的主題是「減災始於學校」,突出 亞、加納、印度、印度尼西亞、肯 了保護兒童安全的必要性,也突出 了讓兒童直接參與增強防災意識工 作的必要性。

國際減災日提出

到了2011年,國際減災日的主題 是「讓兒童和青年成為減少災害風 險的合作夥伴」。

10月13日,聯合國秘書長潘基文 在發表致辭時提到,尼泊爾已開始 向學齡兒童普及家庭和建築安全的 基本知識;在古巴開展的兒童參與 減災和適應氣候變化活動也已漸漸 普及世界其他國家;最近,更有600 多名來自非洲、亞洲和拉丁美洲的 兒童編寫了《兒童減少災害風險憲

救助兒童會、聯合國兒童基金 會、國際計劃和世界宣明會共同發 起了「兒童與氣候變化」同盟,該 包括孟加拉國、巴西、柬埔寨、中 國、多米尼加共和國、埃塞俄比 尼亞、老撾、黎巴嫩、萊索托、墨 西哥、莫桑比克、尼加拉瓜、菲律

兒童盼有安全場所玩耍學習

賓、坦桑尼亞、東帝汶、瓦努阿圖

在研究中,兒童表示他們希望學 校能建在更為安全的地方,而在洪 水和海嘯高發地區,兒童則希望學 校能建在地勢較高的地方。

兒童還希望能保護重要的學習資 必要時學校能迅速地遷移和重建, 並且能有更牢靠的基礎設施,例如 社區的道路和橋樑更結實。

基於上述研究結果,該同盟還起 草了一份兒童憲章,並呈遞給5月9 他説:「這些都傳達了一個信 日至13日在日內瓦召開的「聯合國 『國際減災戰略(UN/ISDR)』全

的2,500名代表都收到了這份憲章。

減災始於學校 國際憲章護童

「憲章」提5主題

「憲章」根據諮詢中兒童提出減 災工作的重點,按照不同領域歸納 社區緊急救援計劃的各項措施,來

(1)學校必須安全,學生的教育 不能中斷。「當我看到學校被暴風 雨破壞時,我感到很傷心。由於學 校倒了,我無法上學。學校是在晚 上倒的,等早上我和朋友上學時, 發現學校已經沒有了。」(老撾的 裡到學校途中需要穿越水溝、河流

(2)兒童保護必須作為災難前、 災難中和災難後的重點工作。「我 們覺得在社區中得不到任何人的保 護。」(莫桑比克的一名兒童)

培訓,這樣他們可以「提高自我保 護和遠離風險困境的能力」,兒童 賓的一名兒童)

球減輕災害風險平台」會議,與會 還希望他們在災難中受到創傷時能 獲得特別的照料。

> (3)兒童有參與和獲取信息的權 利。「我是社區緊急救援委員會的 一名成員。我們的目標是通過落實 降低災害風險。」(多米尼加共和 國的一名兒童)

(4)社區基礎設施必須安全,救 援和重建工作必須有助於降低未來 的風險。「應該修建橋樑,每年雨 季孩子都無法到校學習,因為從家 和水渠, 這些都很容易把兒童淹 死。」(萊索托的一名兒童)

(5)減輕災害風險工作必須覆蓋 最脆弱的群體。「在我的家鄉,有3 個四五歲的孩子在河堤上想要避開 在印度,兒童建議開展生活技能 洪水,但最後滑倒跌進河裡淹死 了,因為他們不會游泳。」

• 通識博客/通識中國

文江學海 ·STEM百科啓智

• 通識博客/通識中國 文江學海