逢星期三見報

影響空間長短 光線波長「互動」助量度

干涉現象 測重力波

上星期談及,根據愛因斯坦(Albert Einstein)的廣義相對論(General Relativity),物質及能量會導致時空扭曲; 當物質及能量移動的時候,時空的扭曲也會隨之而改變。這種改變向四面八方傳送,就是重力波(gravitational wave)了。今年的諾貝爾物理學獎,肯定了3位科學家為成功偵測重力波而付出的努力。

然而重力波好像是看不見、摸不到的東西,我們又是如何偵測到它們的?

利用4,000米長鐳射光束 真空隧道內測量

我們並不是從來沒有量度過「看不 見、摸不到的東西」的:通訊用的無 線電波也是如此。無線電波本質上是 電磁波 (electromagnetic wave) , 能夠牽引電路內的電子隨之而運動, 電波了。

偵測重力波的道理也是大同小異。

影響,再去尋找辦法去量度它們。

那麼重力波對什麼物事有影響? 如前所述,重力波代表的是時空的扭 們眼前間尺的刻度隨之而改變。

只是這樣的改變實在是太微小了 (事實上是可能比一顆質子的直徑還 我們需要先找出重力波對什麼物事有 要小),因此必須用很精準的方法才 能將它們偵測出來。

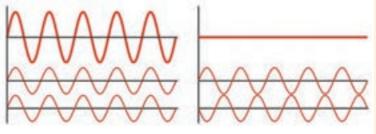
干涉現象如「水波」互動

光線的波長很短,因此可以是一把 刻度很精細的尺。波的干涉現象 (interference) ,正好容許我們善加 利用這把精密的尺。

什麼是干涉現象? 我們可以想像 兩道相遇的水波:水波有低谷、有高 峰,倘若一道水波的高峰遇上另一道 水波的高峰,那麼兩道水波就會「雙 劍合璧」,形成一道高低更顯著的水 波;不過倘若其中一道水波稍為移 動,以致它的高峰正好碰上另外一道

數字排列找規律

水波的低谷,那麼兩道水波就會互相 抵消,最後變成什麼也沒有了。


這種互相加強,或是互相抵消,就 是波的干涉現象。反過來想,這種現 需半個波長的移動,就會由「互相加 強」轉變成「互相抵消」,正好可以 用來量度很微細的距離。

由於重力波的效果真的是很微細, 科學家們被迫依仗長達4,000米的鐳 射光束的干涉現象去量度;為了剔除 附近空氣粒子振動帶來的虛假信號: 科學家們在鐳射光束之外築起了隧 道,再將內部空間的空氣抽走,造成 接近真空的狀態。

這樣如此精確的測量設備,真的是 令人瞠目結舌。不過其實這個實驗初 有關的科學家絕沒有放棄,還不斷改 進測量的設備以提升它的準確度,最 終能夠量度到重力波,為科學史寫下

■科學家們在重力波測量設備之外築起了隧道,再將內部空間的空氣抽走,造成接近真空的狀態。 網上圖片

■波的干涉現象:有時互相加強,有時互相抵消 網上圖片

科學及通識課程,不時參與科學普 及與知識交流活動

作者簡介:香港大學土木及結構工

數字有時用一些特別的形式排列起來,找 找規律,當中也是會有點小發現的。以下先 提出一個找規律的小問題,再討論今次要談

那邊的數,那也有點不容易的。

3, 5 7, 9, 11 13, 15, 17, 19 21, 23, 25, 27, 29

上列之中,若是要找第n行最右邊的單數

由第一行起,1是第1個單數,第二行最右 邊是5,那是第3個單數,第三行最右邊是 11,那是第6個單數,第四行最右邊是19, 那是第10個單數。留意到剛才所說的1,3, 若把單數如下述一般排列起來,找找最右 6和10,是有規律的,10=4+3+2+1,6=3+ 2+1,3=2+1和1=1,全都是三角形數,普

遍來説, $1+2+3+...+n=\frac{n(n+1)}{2}$ 。因此第n行

最右邊的數,是第 $\frac{n(n+1)}{2}$ 個單數,也就是

 $2 \times \frac{n(n+1)}{2} - 1 = n^2 + n - 1$ °

有了這個結果,討論以下的問題時就簡單

問題

考慮如下算式,找出規律並證明 1=1 3+5=87+9+11=27 13+15+17+19=64 21+23+25+27+29=125

不難看出,等號右方是立方 數,普遍來說,第n行的等號 右邊就是n3。只是這環不過是個猜想,未可 當為事實。以下就一步一步來證明。

由之前的討論得知,第n行等號左邊的最 右邊的項,是n²+n-1。而第n行共有n個單 數,相鄰項之間相差2。因此第n行左邊由 大至小加起來是:

清楚沉實表達

回頭看看這道題目,開始時還不過是把 單數順着排列,每行1個、2個、3個那樣順 序排。那樣找找最右邊的數也好,最左邊的 也好,好像沒什麼特別。後來倒神奇了,原 來每行加起來竟是立方數,這還真是有點始 料不及,令人覺得有點驚奇。

在小學階段,學奧數的學生,多數都是 頭腦靈活的,找規律大概都難不倒他們,比 如看着上邊的問題,説得出右邊是立方數的 大概也不少。只是較少人會真個走去證明它 的。就是中學生,願意猜到規律後,沉沉實 實地做好那證明的,也是較少的。

上邊的問題所訓練的,除了是當中必要 的代數技巧以外,還有的是作猜想的能力, 另外還有把通項表達清楚的能力。剛才討論 第n行的時候,第一步是找等號左邊的最右 邊的項怎樣用n表示。要留意這也不是任意

 $(n^2 + n-1) + (n^2 + n-1-2) + (n^2 + n-1-4) + (n^2 + n-1)$ $n-1-6+...+[n^2+n-1-2(n-1)]$

 $= n(n^2+n-1)-2[1+2+3+...+(n-1)]$ $=n^3+n^2-n-2\times\frac{n(n-1)}{n}$

這樣便證明了左邊第n行加起來真是n3。

訓練精細謹慎

的,比如若果選擇去找最左邊的項的表達 式,又會麻煩了一截。

另外,當中最右邊的項,由觀察到它是 第幾個單數,到計算出那個單數是什麼,也 要轉換一下,要說得清清楚楚那個規律,才 可以轉換得準確。

這些找規律的問題,有時純粹猜猜加起 來是怎樣,固然有趣味。只是要在數學上清 清楚楚地説出各個數的表達式具體怎麼樣, 寫出來又沒有錯,思想又要仔細點了,要沉 實多了,沒有猜數字那麼輕鬆簡單的。

最易錯的地方是,有時數着數着,轉換 幾次,總會相差了一點點,不是錯了某個正 負號,就是不知哪個項數多了一次兩次。這 些錯誤也不能只説是「不小心」便輕輕帶 過,當作沒事,總要在沉實而詳盡的表達 中,訓練出精細和謹慎來

簡介:香港首間提供奧數培訓之教育機構,每年舉 辦奧數比賽,並積極開辦不同類型的奧數培訓課 程。學員有機會獲選拔成為香港代表隊,參加海內 外重要大賽。詳情可瀏覽:www.hkmos.org

在2015年的施政報告中,特區政府首 程、數學)教育,並在2016年施政報告 中獲得進一步的支持。創新及科技局亦 於2015年11月成立,展示政府大力推動 科研及創科發展的決心,同時為有志於 在日後從事數理科研的大學生、中學生 提供了較清晰的進修及發展方向。

及至今年行政長官在10月11日發表的 在第三章「多元經濟」中,便花了很大 的篇幅去論述「創新」、「科技」、

「編程」、「STEM」等項目。如能全面 落實相關的施政內容,對教育界實在是 大喜的信息。現省去與前線教師相關的

助學金吸引本地生投身科研

在大學科研方面,2013/14至2016/17

年度大學教育資助委員會/研究資助局給

施政報告惠及創科教育

次提出推動 STEM (科學、科技、工 予大學的研發撥款,由44.6 億元增加了 18%至52.8億元。政府又預留不少於100 育局會為所有中、小學的學校領導層和 億元作為大學研究的資金。

程的本地學生提供助學金,以吸引他們 展。政府亦會擴大現時的「實習研究員 計劃」,讓更多企業和「科學、科技、

2015/16及2016/17學年分別向所有公營 小學和中學發放一筆過津貼外,亦更新 了科學、科技和數學學習領域課程,加 強學生綜合和應用知識與技能的能力, 期望藉此培養他們的創造、協作和解決 問題的能力。

「計算思維 — 編程教育」的補充文件,

將會在短期內完成,供學校採用。

在師資培訓方面,由本學年開始,教 中層管理人員提供一系列的進深培訓課 教育局會透過向研究基金注資30億程,提升教師在規劃及推行校本STEM

新設於九龍樂富的「藝術與科技教育 中心」內的「STEM教育中心」亦即將 開始運作,為中小學教師提供培訓及相 關的教學支援。藉着聯同大專院校和其 在科學普及教育方面,教育局除了在 動,如與科學科技相關的博覽會,讓學 生有學以致用,互相觀摩的機會。

> 香港科學館的常設展覽亦會作定期的 更新,以加強中小學及幼稚園利用科學 館作為推動STEM教育的途徑。

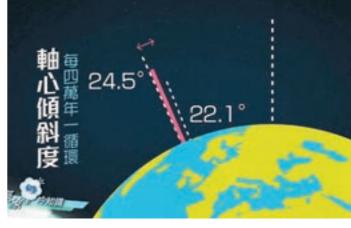
■張錦華博士 香港常識科教育學會理事、Google 施政報告又提到,教育局正在草擬 Certified Educator、 Apple Teacher (Swift Playgrounds)

「米蘭科維奇循環」證氣候可自然變化

隔星期三見報

不知道大家是否還記得,小學曾經學過 地球是會自轉,而自轉的軸心是傾斜,在 同一時間地球是圍繞着太陽公轉,但原 來,地球自轉的軸心,所指的方向和公轉 軌跡, 並不是永恒不變。

塞爾維亞天文學家米蘭科維奇,在二十 世紀初提出,地球圍繞太陽環行時,3個 軌跡幾何變數的周期性變化,會影響地球 冰河時期的始末興衰。


3變數影響天氣

第一個變數,是地球環繞太陽公轉軌跡 的形狀,軌跡有時較接近圓形,但有時較 接近橢圓形。這個變化大約每十萬年循環 一次。軌跡的變化會影響在不同季節抵達 地球的太陽能量。

第二個變數是地球自轉軸心的傾斜角 度,它會在22.1度至24.5度之間變化,大 約每4萬年循環一次,這個變化不會改變 由太陽抵達地球的總能量,但會影響日照 在不同緯度的分佈

最後一個變數,是地球自轉軸心的進 動,亦即是地球軸心的搖晃,軸心轉動一 圈大約需時二萬六千年。地球軸心的搖晃 同樣會影響日照在不同緯度的分佈。

米蘭科維奇認為,這3個變數的周期性 變化,對抵達北半球高緯度地區的日照影 響至為重要,因為地球大部分的冰雪面都

■地球自轉軸心的 傾斜角度變化,會 影響日照在不同緯 度的分佈。

視頻截圖

集中在這地區,而冰雪面的變化可以引致 「正回饋」作用,舉例:當北半球高緯度 地區所接收的日照減少,夏季的升溫不足 以融化上一個冬季的冰雪,全年整體的冰 雪便會增加,而白色反光的冰雪面,亦會 把更多的陽光反射回太空,減少地球接收 到的熱力,幫助冰雪進一步增加,形成-個可以自我延續和增強的循環。

年復一年的冰雪增長,最終會把地球推

氣候變化否定者理虧

經過科學家的反覆檢視,米蘭科維奇的 理論終於在20世紀後期獲得接納。這3個 地球軌跡幾何變數的周期變化,現在稱為 「米蘭科維奇循環」,理論顯示地球的自 然變化可以改變地球的溫度,有氣候變化 否定者便利用這個論點,否定近百年來的 人為氣候變暖。

然而,我們必須注意,這個循環的時間 尺度是以萬年計,過程相當緩慢。古氣候 學的研究發現,過去五千年來,地球經歷 一個長期而且緩慢的降溫過程,與地球高 緯度地區接收日照所呈現的減少趨勢 致。到了最近一百年,地球温度急速上 升,完全逆轉了降溫。這麼急速的升溫 怎能理解為自然變化?氣候變化否定者的 論點,是站不住腳的。

簡介:本欄以天文台的網上氣象節目《氣象冷知識》向讀者簡介有趣的天氣現象 詳請可瀏覽天文台YouTube專頁:https://www.youtube.com/user/hkweather

· 通識博客/通識中國

文江學海 STEM 百科 容