逢星期三見報

助建智慧城市 寫成《星戰》熔岩

數學「分形」釋萬物「自似」

16世紀科學家伽利略認 為,宇宙是以數學語言寫

成,它的字母就是三角 形、圓形等幾何圖形。

自然界中的事物,我們 會以不同的幾何圖形描 述,如地球為球體,蜂巢 為六角形等等。沒有這些 幾何圖形,我們就不能理 解這個世界。

20世紀數學家首發現

然而,自然界的雲層、 山嶺、海岸線等,形狀不 規則,不能以普通的幾何 圖形來準確描述。

到了20世紀,數學家 Benoit Mandelbrot 發 現 「分形」此一數學概念, 實為基礎科學中所欠缺的 一塊拼圖。若沒有「分 形」,我們就不能全面地 理解自然世界。

以「自相似性」爲基礎 描述不規則形狀

細心觀察下左圖中的羅馬椰 菜花(又稱寶塔花菜 Romanesco broccoli),再看看 下右圖中的蕨類植物:它們局 部展示的形狀 (紅圈所示), 為自相似性 (self-similarity) 。

維度以分數表達

Mandelbrot 發現自然界有許 多擁有自相似性特點的物事, 例如蜿蜒的海岸線、連綿的山 嶺等等,在自相似性的基礎 下,Mandelbrot 認為我們中小

「點」,一維理解「線」,二 與整體形狀相似,這種特點稱 維明白「面」和三維描述 「體」,甚至以四維的「時 數。而分形為不規則圖形,不

能以歐氏幾何來分析,分形的

(Euclidean Geometry) 不能完

歐氏幾何讓我們以零維認識

整描述形狀,故此他創立了另

一種幾何——分形。

例如英國的海岸線是1.25 維,西蘭花是2.66維,當中計 算複雜, 涉及對數

■初中生動手建分形模型

作者供圖

■《星球大戰》中的熔岩(上)和《魔戒》三部曲中的山嶺 (下)皆以分形製作。 網上圖片

見於城市網絡系統 電影特效

科學家及數學家發現,除了在自然界,「分 統,甚至我們日常使用的社交網絡,都展現出 形」亦存在於動物、人類、甚至社會中。人類 的身體中,血管的排列、肺部氣管的組合,實 為分形。如果以這個想法去了解人體,可以幫 助醫生更準確估算藥物如何到達病人體內。

在現代生活中,我們經常接觸到各樣的網 絡,如交通網絡、電纜、污水系統、資訊系

分形的特徵。如果希望了解如何有效供電、排 放污水及傳播資訊,我們需要學習分形,以助 準確的城市規劃。

分形亦使用於電腦特技,例如《魔戒》電影 三部曲中的山嶺,又或《星球大戰》中的熔 岩,均以分形所製。

初中生動手建模型

學習不一定要在課室內,亦 不一定要對着課本及考試。

今年年初曾與香港科技園公 司舉辦過一個讓初中生學習分 形的活動,學生先以氣球把基 本的單位三角錐體組起來,再 把一樣的三角錐體組成更大的

三角錐體(上圖),讓他們理 解分形的 自相似性,親手做一 次比起紙上談兵更有效。

最後,與一百多名中學生聯 手製作高達7米數學上稱為 Sierpinski tetrahedron的三角

科學並非只局限於實驗室內,數學亦非數學家 腦海中的天馬行空。我們不要以為科學及數學只 是校內課程,進步的醫療及通訊系統,以至2016

年特區政府施政報告提及的智慧城市,都需要基礎數學和科學 概念的幫助去實現。

作者簡介:畢業於加州大學洛杉磯分校(UCLA),曾在加 州的州立大學教授化學,現任教於香港大學。聯絡:www. facebook.com/drbennyng o

「數」出大學路

逢星期三見報

每學年的9月,中六生都開始為填寫大學聯招 的選報課程而傷腦筋。要從9間大專院校、十多 個學系、幾百個課程中挑選20個課程,實在是 一項艱巨的工程。

選科時,運用「雙管齊下」的策略,可使工 程變得輕省一點。什麼是「雙管齊下」?就是 按興趣和成績選科。按興趣可以排除一些不會 選讀的課程,按成績可以選出有資格入讀的科 目,這樣「一捨一選」會比較容易選取合適的 課程。

要知道自己的成績可以入讀哪些學科,就有 賴資料搜集和分析了。大學聯招網上資料、學 系資訊日、課程講座……這些都是收集數據的 途徑。

統計學助「計」選報課程

有了數據後就進行分析:各科入學的最低要 求,收生的最高分數,哪些科目的競爭較大, 哪些科目比較冷門……分析後再進行解讀與推 斷,自己的成績到達心水科目的入學要求嗎? 根據往年的收生情況,自己的分數能夠入讀 嗎?最後,根據這些推斷來決定選報的課程。

一次選科經驗,使考生在現實生活中不知不 覺地運用了統計學。其實,統計學與生活息息 相關,只要我們稍加留意,就會發現。除了選 科、還有就業、置業、投資等等的決定,我們 都可以通過收集數據、分析數據、解讀數據, 來進行較客觀的決策。

中六合彩概率是?

在統計學中,概率 (probability) 是其中一個 核心課題。概率是表示某個事件發生的機會之 大小,它的最大值是1,最小值是0。概率越 大,表示事件發生的機會越大。

例如投擲一枚骰子,擲得0的概率是0,表示 根本不可能發生;擲得1至6任何一個數的概率 都是 $\frac{1}{6}$; 擲得小於 10 的自然數的概率是 1,表示 必然會發生。計算概率時,兩個重要的基本概

(i) 單個事件的概率和: 擲得3或4的概率是

1 1 2 1 6 6 6 3 (ii) 同時發生的事件乘: 擲得3和4的概率是

6 6 36 那麼,六合彩中頭獎的機會又是多少呢?六 合彩有49個號碼,猜中其中6個號碼的概率是

 $\times 6 \times 5 \times 4 \times 3 \times 2 \times 1$

10068347520 13983816

,可見中頭獎的概率真是微乎其微

西大學 問題 根據右圖所示, λ□ → 入讀甲大學的概率是多少? 丁大學

直觀地看,共有7條路徑通往4間大學,其中2條通往甲大學,答案是2嗎?當

然不是。我們不能單單考慮連接大學的通道,而忽略入口處的道路。

留意入口的4條道路中,第二及第三兩條都通往甲大學。第二條是雙岔路,其中一條岔路 可通往甲大學;第三條是三岔路,其中一條也可通往甲大學。

經由第二條道路入讀甲大學的概率是

經由第三條道路入讀甲大學的概率是

 $=\frac{3+2}{2}$ 因此入讀甲大學的總概率是 $\frac{1}{8} + \frac{1}{12} = \frac{3+2}{24}$

進大學是一個學子的夢想還是理 想,則取決於他有否為這個目標而 奮鬥。天下無難事,只怕有心人。 只要肯努力不懈、不怕付出汗水, 前面定有通往大學的路!

■梁瑞萍、許少端

簡介:香港首間提供奧數培訓之教育機構,每年舉 辦奧數比賽,並積極開辦不同類型的奧數培訓課 程。學員有機會獲選拔成為香港代表隊,參加海內 外重要大賽。詳情可瀏覽:www.hkmos.org

O2O移動支付 港須追上步伐

地球有如溏心蛋?

本港為培育優秀零售業人才,由財政司司長曾俊華主禮揭 幕,政府、業界和職業訓練局(VTC)合作推動的培訓模 擬商店「零售體驗廊」 (Retail Lab) 啟用剛剛一年。

上月,我有幸與零售業界會員及職業訓練局合辦活動並參 觀了體驗廊的設備。筆者發現該中心雖名為Lab,在零售支 付系統方面卻只配備了一般市面流行而技術已經超過二十年 的信用卡及八達通讀卡器等傳統終端設備,而日漸普及的 O2O移動支付相關設備卻乏善足陳。

手機支付大勢所趨 立法教育增競爭力

如要同學趕上社會需求,甚至令香港零售業趕上發展迅速 的O2O電子商務發展,有關支付寶、微信及剛剛在內地落 地的Apple Pay等手機支付應用的教育和研究必須加快。

事實上,現在本港很多有做內地旅客生意的連鎖商店如莎 莎、華潤、屈臣氏、百老匯、豐澤、759等已經紛紛接受支 付寶或微信支付。估計不久將來會有更多商戶接受手機支 付,在方便客戶以外更能利用大數據及O2O電子商務帶來

的一切嶄新銷售模式去提高競爭力。 由於本港手機支付市場仍然被傳統銀行和落後法例所網綁 而一直缺乏發展空間,加上已經邁入衰老期的八達通仍然非 常普及,現時內地及國際流行的手機支付系統遲遲未能在港 落地開花。其實校園內也沒有跟上社會發展步伐,在收取學 費、雜費、小賣部及飯堂的買賣等也缺乏手機支付系統,更 不用説銀聯和 PayPal 支付的渠道。

以上種種情況,結果導致學校本身對這方面的發展-實際支付及教育應用到課程內容俱與國際市場發展脱節。為 提高本港競爭力,筆者建議新成立的創新及科技局能早日與 教育局、金融管理局及業界攜手合作、盡快成立跨部門工作 小組去研究各種可行方案,從法例、教育及金融改革的層面 ■香港新興科技教育協會 陳家豪

簡介:本會培育科普人才,提高各界對科技創意應用 的認識,為香港青年人提供更 區的科技創意活動,詳情可瀏

覽www.hknetea.org

隔星期三見報

假如來一趟地心之旅,會看到哪些奇景?生活在地球表面 的人類一直好奇地球的內部是什麼模樣。無奈以當今的技術 手段尚不足以讓我們直接深入地下觀察研究。

地震「縱橫波」透露地心結構

不過,地球科學家還是想到了其他方法來了解地球內部結 構,比如利用地震波。埋在地下的炸藥爆炸時會引發一次微 小地震,產生的地震波就會傳到四面八方。地面上裝置的地 震儀接收到地下地震波後,就能分析出許多地下的情形。這 就是目前尋找地下資源時所採用的人工地震勘探法。

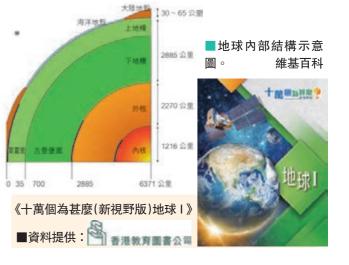
這種人工地震產生的地震波只能深入地下數公里,因此想 了解地球深部的結構,只有利用天然地震產生的地震波了。

天然地震能量巨大,產生的地震波幾十分鐘就可以「跑」 遍地球的整個身體。地震波的傳播速度,與所通過的介質的 性質有關,可分為縱波和橫波。縱波既能在固體中傳播,也 能在液體中傳播,而橫波不能在液體中傳播。地球內部若介 質不均匀,在兩種介質的界面上,地震波會發生反射和折 射。根據記錄到的各種不同波的到達時刻,可計算出地下不 同深度的地震波速度,描繪出地球內部結構的特點。

蛋殼蛋白蛋黃 地殼地幔地核

1909年8月,克羅地亞首都附近發生了一次地震,當地學 者莫霍洛維奇在研究地震儀收集到的信息時,發現地震波在 地下幾十公里處速度突然增大,説明此處有一個界面,界面 上下物質的成分或結構有顯著差異。這個界面後來被稱為莫 霍洛維奇不連續面,簡稱莫霍面。

莫霍面之下,越深處地震波速度越快,但是到了約2,900 公里深處時,縱波的速度從13.7公里/秒急速下降為8公里/ 秒,而橫波則停止傳播。這個界面是1914年由古登堡首先 發現的,所以稱為古登堡面。


根據這兩個界面,地球科學家將地球內部分為3個層圈

莫霍面以上的地球表層稱為地殼,莫霍面到古登堡面之間的 地球部分稱為地幔,古登堡面以下到地心之間的部分稱為地 核。如果把地球比作一個雞蛋,最外部薄薄的地殼好比蛋 殼;位於中心部位的地核就是蛋黃;像裹着蛋黃的蛋白一樣 包圍着地核的,那就是地幔了。

3個大層圈已經確定,但每一層內部就是均匀的嗎?答案 是否定的。通過進一步用地震波「這盞明燈的照射」, 1923 年地質學家康拉德發現,地殼還可以分為上下兩層

上層富含硅、鋁元素,下層富含硅、鎂元素。 地幔也可分為上地幔和下地幔兩層,在上地幔上部有一個 軟流圈,裡面儲存着大量流動的岩漿。軟流圈頂部的上地幔 部分與地殼共同構成了岩石圈,在軟流圈上運動。地核外層 為外核,因為橫波無法傳播,可見其是液態(或處於熔融狀 態) , 地核內層為內核, 內核橫波能傳播, 可見其是固體。

所以説,地球這隻特大號「雞蛋」煮得並不太熟,它的 「蛋黃」還有一部分呈現液體狀態呢!

• 通識博客/通識中國 - 百搭通識

• 通識博客/通識中國 文江學海